EU rules out tax on plastic products to reduce waste Climate change in the Caribbean – learning lessons from Irma and Maria Time to shine: Solar power is fastest-growing source of new energy Coca-Cola Produced More Than 110 Billion Plastic Bottles Last Year Natural health service: wildlife volunteers get mental health boost Bags for life carry food poisoning risk if used for raw meat or fish We are all at risk from poisonous mercury. It’s time to take action Climate change made Lucifer heatwave far more likely, scientists find Climate experts criticize Scotland’s greenhouse emissions cuts strategy Assumed safety of pesticide use is false, says top government scientist

New water-tracing technology helps protect groundwater


1 Star2 Stars3 Stars4 Stars5 Stars (No Ratings Yet)

UNSW Australia researchers have used new water-tracing technology in the Sydney Basin for the first time to determine how groundwater moves in the different layers of rock below the surface. The study provides a baseline against which any future impacts on groundwater from mining operations, groundwater abstraction or climate change can be assessed.

“All underground engineering projects have the potential to have an impact on groundwater,” says study author and PhD candidate Katarina David, from the UNSW Connected Waters Initiative (CWI). “So it is essential we understand how the water falling on the surface finds its way to the aquifers deep underground.”

Study author, Dr Wendy Timms, also from CWI, says: “This is particularly important in the southern Sydney basin where six underground coal mines operate within the Sydney water supply catchment, and underneath wetlands and sensitive ecosystems.”Our research has global relevance as well, because this new technology provides a quick and cheap alternative to having to install numerous boreholes for groundwater monitoring.”

The study is published in the journal Science of the Total Environment. The team used a 300-metre deep core drilled through the layers of sandstone and claystone at a site on the Illawarra plateau. Small sections of the moist rock from the core were then carefully preserved and analysed in the UNSW laboratory.

“The best tracer of water is water itself. So we directly analysed the groundwater in the pores of the rock from different depths and rock types, using the latest laser technology,” says UNSW Centre Director Professor Andy Baker.”We identified the different isotopes of hydrogen and oxygen in the water, which allowed us to work out where the water came from. We identified four distinctive layers of rock, or hydrogeological zones, which control groundwater movement in the Sydney Basin.

“The water moves very slowly underground, and has taken a long time to reach a depth of 300 metres. But we found the isotopic composition of the deep water was similar to that of modern rainfall, which means the system in the Sydney Basin has been relatively stable for thousands of years. “Using this as a baseline we can detect any future changes in water flow or water quality.”

The technique has the advantage that hundreds of rock samples from a single core can be quickly and cheaply analysed. It can also be used for sites where the groundwater is very deep or held tightly in the pores of the rock.

Source

http://www.enn.com/ecosystems/article/49023

Posted by on Oct 5 2015. Filed under Water & Wetland. You can follow any responses to this entry through the RSS 2.0. You can leave a response or trackback to this entry

Leave a Reply

Polls

Which Country is most Beautifull?

View Results

Loading ... Loading ...